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The phase diagram of the Ising model in the presence of nearest- and next-nearest-neighbor interactions on
a simple cubic lattice is studied within the framework of the differential operator technique. The Hamiltonian
is solved by employing an effective-field theory with finite clusters consisting of a pair of spins. A functional
form is also proposed for the free energy, similar to the Landau expansion, in order to obtain the phase diagram
of the model. The transition from the ferromagnetic �or antiferromagnetic� phase to the disordered paramag-
netic phase is of second order. On the other hand, a first-order transition is obtained from the lamellar phase to
the paramagnetic phase, as well as from the lamellar phase to the ferromagnetic �or antiferromagnetic� phase,
with the presence of a critical end point. An expected singular behavior of the first-order line at the critical end
point is also obtained.
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The occurrence of competing exchange interactions in
magnetic materials can give rise to a rich variety of magnetic
ordered states, as well as phase transitions between them,
with the presence of first- and second-order lines and critical
and multicritical phenomena �1�. Of particular interest is the
Ising model with nearest-neighbor �J1� and next-nearest-
neighbor �J2� interactions �denoted by J1-J2 Ising model�
which can be defined by the Hamiltonian

H = − J1�
NN

�i� j + J2 �
NNN

�i�� j�, �1�

where �i= ±1 and the sums run over nearest-neighbor �NN�
and next-nearest-neighbor �NNN� pairs of spins, respec-
tively. The one-dimensional version of the model �1� can be
exactly solved and has no phase transition for finite tempera-
tures �2�. Apart from an exact solution available on the so-
called disorder line for the two-dimensional model �3�, in
two and three dimensions one has no exact solution and the
form of the phase diagram in its parameter space remains a
considerable problem. It is known that the system presents a
disordered paramagnetic phase �P� at high temperatures and,
depending on the ratio �=J2 /J1, two different ordered
phases at low temperatures: �i� either a ferromagnetic phase
�F� when J1�0 or an antiferromagnetic phase �AF� when
J1�0 and �ii� a lamellar, also called superantiferromagnetic
�SAF�, phase. In fact, the phase diagram of this system is
symmetric regarding to the sign of J1: for negative values of
J1 one has just to change the F ordering by the AF ordering.
In general, J1�0 and also J2�0 are considered in Eq. �1� in
order to explore the richer portion of the phase diagram,
since in the case J2�0 one has no competing interactions
and a simple ferromagnetic phase.

The Hamiltonian �1� has been studied on the square lattice
by Monte Carlo �MC� simulations �4,5�, the cluster varia-
tional method �CVM� �5,6�, and an effective-field theory
�EFT� employing finite clusters �7�. It has been shown that
the phase diagram in the � versus temperature plane exhibits
a second-order phase transition between the ferromagnetic

�or antiferromagnetic� phase to the paramagnetic phase for
��1/2, with a decreasing critical temperature Tc��� as �
increases, and finally approaching zero when the ratio �
=1/2. Due to the exact solution for the disorder line, it is
known that there is no finite-temperature transition between
the F and SAF phases �3,8�. In the region ��1/2 the critical
exponents are the same as those of the pure two-dimensional
Ising universality class. For ��1/2 the low-temperature or-
dered phase corresponds to a lamellar structure, or a super-
antiferromagnetic phase, composed of alternate single ferro-
magnetic rows �or columns� of opposite oriented spins. In
the range 1/2����t, the transition from the SAF phase to
the disordered phase is first order. ��t ,Tt� is a tricritical
point. For ���t the transition is second order with critical
exponents continuously varying with the parameter � �non-
universal behavior� �4,5�.

On the other hand, in three dimensions we do not have so
many studies as in its two-dimensional counterpart and the
situation seems to be not so clear yet. A study using the
CVM �9� has shown that the model has a first-order transi-
tion line separating the SAF phase from the disordered para-
magnetic phase, as well as from the SAF phase to the ferro-
magnetic or antiferromagnetic phase, with the presence of a
critical end point at ��CE ,TCE�. In this case, this model has
been previously applied to treat random surfaces �10,11� and
microemulsions �12� and also as a discretized string action
�13�.

In this paper we study the criticality of the J1-J2 Ising
model described by the Hamiltonian �1� on a simple cubic
lattice. We only consider J1�0 because the phase diagram is
symmetric regarding the sign of J1. We employ the EFT
which has been successfully used to treat critical and multi-
critical phenomena in classical �14–17� and quantum models
�for instance, transverse Ising and Blume-Capel and ferro-
magnetic and antiferromagnetic quantum Heisenberg, as well
as frustaded Heisenberg, among others�. More recently, the
EFT approach has been extended also to the study of first-
order transitions through a functional form for the free en-
ergy based on a Landau-like expansion �7,18�. When applied
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to the two-dimensional version of the model �1� the EFT
using a cluster of four spins in a plaquette �7� could account
for the phase diagram of the model producing results in bet-
ter agreement with MC simulations than the CVM approach.
For instance, the EFT and MC simulations predict a second-
order phase transition for �=1 while the CVM gives a first-
order character. The same qualitative result is also obtained
in this case from the EFT with a two-spin cluster.

The ground state �T=0� has an exact solution which de-

pends on the frustration parameter �. For ���M =
z1

2z2
, where

z1 and z2 are the NN and NNN numbers, respectively, we
have a ferromagnetic state and for ���M this frustration
parameter induces a new magnetic order that depends on the
dimension d of the lattice. As said above, on a square lattice
�d=2� the SAF state is characterized by alternate single fer-
romagnetic rows �columns� of opposite oriented spins. In the
case of the simple cubic lattice �d=3� the model exhibits a
lamellar phase which consists of alternate planes of different
spin alignments. At �=�M and T=0 we have a multiphase
point in which several different ordered phases coexist
�contrary to the d=2 case where in addition to the ordered
phases the disordered paramagnetic phase also coexists at
this point�.

For finite temperatures we use herein the EFT approach
which provides a hierarchy of approximations to obtain the
thermodynamic properties of magnetic models. One can con-
tinue this series of approximations by considering larger and
larger clusters and, as a consequence, better results are ob-
tained. The exact solution would be obtained by considering
an infinite cluster. However, by using relatively small clus-
ters one can obtain a reasonable description of the thermo-
dynamic properties of several models.

The EFT method is based on the use of rigorous correla-
tions identities as a starting point and utilizes the differential
operator technique developed by Honmura and Kaneyoshi
�19�. The thermal expectation value of a general function of
spin components �N can be obtained by the relation corre-
sponding to the generalized Callen and Suzuki identity �20�,
i.e.,

��N� =�TrN �N exp�− �HN�
TrN exp�− �HN� 	 , �2�

where the partial trace TrN is taken over the set of N spins
variables specified by a finite-system Hamiltonian HN, �N is
a thermodynamic quantity which is a function of all the N
spins of the cluster, and �···� indicates the canonical thermal
average taken over the ensemble defined by the complete
Hamiltonian H. In order to treat the Hamiltonian �1�, we use
a cluster with two spins on a simple cubic lattice which is
illustrated in Fig. 1. The Hamiltonian for this cluster is given
by

H2 = − J1S1S2 − a1S1 − a2S2, �3�

with

a1 = − J1�
i=1

5

�i + J2
�
i=10

17

�i + �
i=19

22

�i� �4�

and

a2 = − J1 �
i=14

18

�i + J2
�
i=2

9

�i + �
i=23

26

�i� , �5�

where we adopt Si= ±1 for the spins belonging to the cluster
and �i= ±1 for the 26 spins surrounding the cluster. The
quantity �2 is either mA or mB, where we have divided the
lattice sites into two distinct interpenetrating sublattices A
and B, with

mA = �S1� = ��i� ,

�i = 2,3,4,5,6,7,8,9,18,19,20,21,22�

and

mB = �S2� = �� j� ,

�j = 1,10,11,12,13,14,15,16,17,23,24,25,26� .

The average magnetization per spin in sublattice A �see,
for example, Ref. �18�� is obtained by

mA =� �
S1,S2=±1

S1 exp�− �H2�

�
S1,S2=±1

exp�− �H2� 
 , �6�

which can be written as

mA = � sinh�ã1 + ã2� + exp�2K1�sinh�ã1 − ã2�
cosh�ã1 + ã2� + exp�2K1�cosh�ã1 − ã2�	 , �7�

where ãi=−�ai �i=1,2� and K1=�J1.
Now, using the identity exp�aDx+bDy�g�x ,y�=g�x+a ,y

+b�, where D�= �
�� ��=x ,y� is the differential operator, Eq.

�7� can be rewritten as

mA = �exp�ã1Dx + ã2Dy���g�x,y��x,y=0, �8�

with

FIG. 1. �Color online� Cluster with two spins S1 and S2, and the
corresponding 26 nearest- and next-nearest-neighbors �i, in the
lamellar phase structure.
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g�x,y� =
sinh�x + y� + exp�2K1�sinh�x − y�
cosh�x + y� + exp�2K1�cosh�x − y�

. �9�

Using the van der Waerden identity for a two-state spin—
i.e., exp�a�i�=cosh�a�+�i sinh�a� ��i= ±1�—Eq. �8� can be
exactly written in terms of multiple-spin correlation func-
tions occurring on its right-hand side. However, it is clear
that if we try to treat exactly all boundary spin-spin correla-
tion functions, the problem becomes unmanageable. In this
case we use a decoupling procedure which ignores all high-
order correlations on the right-hand side of Eq. �8�, i.e.,

��i · � j ¯ �l · �p� � ��i� · �� j� ¯ ��l� · ��p� , �10�

where i� j� ¯ � l�p. Approximation �9� neglects correla-
tions between different spins but takes relations such as
��i�2=1 exactly into account, while in the usual mean-field
approximation �MFA� all the self-spin and multiple-spin cor-
relation functions are neglected. Similar expressions are ob-
tained for mB.

Applying approximation �10� in Eq. �8� and the boundary
conditions for the ferromagnetic phase mA=mB=m and
lamellar phase mA=−mB=m, we obtain equations of state
given by

m = 	
�m,�,T� = �
p=0

12

a
p�T,��m2p+1, �11�

where the coefficients a
p�T ,��= 1
�2p+1�!

� �2p+1	


�m2p+1
�

m=0
are deter-

mined by applying the identity

exp�aDx + bDy�g�x,y� = g�x + a,y + b� .

The corresponding expressions for a
p�T ,��. are rather
lengthy to be reproduced here. In the above equations we
have 
=F �ferromagnetic� or SAF �lamellar�.

Because close to a continuous transition one has m�0,
from Eq. �11� one can locate the second-order line through
the condition

a
0�T,�� = 1. �12�

Possible tricritical points can be additionally located when

a
1�T,�� = 0. �13�

One can note that it is not possible to calculate first-order
transition lines on the basis of the equation of state �11� alone
because in this case one has m�0 at the transition point. To
solve this problem one needs to compute the free energies for
the ferromagnetic, SAF and paramagnetic phases. First-order
transitions correspond then to the locus on the phase diagram
where free energies are equal. Although the EFT does not
furnish a way to get such a function, we can resort to a
different procedure based on the well-known Landau expan-
sion. Assuming that the equation of state �11� can be ob-
tained by the minimization of a given free energy functional
like �
�T ,� ;m�—i.e.,

��


�m =0—we can express such relation
as

�
�T,�;m� = �0�T,�� +
�1�T,��

2 �1 − �
p=0

12
a
pm2p

p + 1 �m2,

�14�

from which one gets equation of state �11� where �r=0,1�T ,��
are arbitrary functions which turn out to be irrelevant when
searching for the discontinuous transitions. For instance, the
boundary between the ordered phases and the disordered
paramagnetic phase m=0 is given by

�
p=0

12
a
p�T,��m2p

p + 1
= 1. �15�

Note that for a second-order transition where m=0 equation
above is the same as Eq. �12�, as it should be.

Thus, for a given T and �, second-order transitions are
obtained when Eq. �12� is satisfied and first-order transitions
to the disordered state are obtained by simultaneously solv-
ing the two transcendental expressions �11� and �15� for 

=F,SAF. The transition between the ordered phases F and
SAF is given when

�1 − �
p=0

12
aFpmF

2p

p + 1 �mF
2 = �1 − �

p=0

12
aSAFpmSAF

2p

p + 1 �mSAF
2 ,

�16�

where mF and mSAF are the solutions of Eq. �11� for 
=F and
SAF, respectively. The corresponding phase diagram is de-
picted in Fig. 2. A second-order transition line separates the
F �or AF� phase from the P-disordered phase which termi-
nates at the critical end point ��CE=0.246 511, kBTCE /J1
=0.940 00�. A first-order transition is seen for ���CE be-
tween the SAF and P phases. As � increases this transition
remains first order. This is indeed an expected result because
when �→
, the system corresponds to independent fcc an-
tiferromagnetic Ising models which present a first-order be-
havior. Indeed, this first-order transition has been recently
obtained by using Monte Carlo simulations using the Wang-
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FIG. 2. Phase diagram in the � versus temperature plane of the

Ising model with nearest- and next-nearest-neighbor interactions on
a simple cubic lattice obtained by the EFT with two-spin cluster.
The solid and dashed lines correspond to second- and first-order
phase transitions, respectively. CE is the critical end point and the
low-temperature first-order line ends at �M =1/4 �see text� for T
=0. The inset shows the region close to the critical end point.
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Landau algorithm �21�. The limiting slope for �→
 gives us
the transition temperature in units of J2: namely, kBTN /J2
=0.8920. This value is quite far from the Monte Carlo result
�21� �kBTN /J2�MC=1.7217�8�. This discrepancy can be un-
derstood because it corresponds to the case J1→0 and the
cluster of Fig. 1 has in this case its interacting spins discon-
nected and asymmetric regarding its neighbors. In fact, the
present pair approximation applied directly to the fcc lattice
gives kBTN /J2=1.526 04, which is indeed comparable to the
above Monte Carlo result.

For T�TCE the SAF and the F �AF� phases are also sepa-
rated by a first-order transition line. However, this transition
line is in overall bent to the ferromagnetic phase, in contrast
to the positive slope obtained for this line according to the
CVM approach �9� and also by low-temperature series ex-
pansions �22�. A different critical exponent for the critical
end point has also been achieved �9�. It has to be noticed,
however, that the widely varying estimates of critical expo-
nents obtained in Ref. �9� are due to the presence of strong
crossover effects. We expect to have the same critical behav-
ior at a CEP, as is indeed the case for the double critical end
point of the spin-3 /2 Blume-Capel model �23�.

The inset in Fig. 2 shows the first-order transition line
close to the critical end point. One can see that a singularity
indeed appears at this point, as predicted by phenomenologi-
cal scaling and thermodynamic arguments by Fisher and co-

workers �24–26�. Although this prediction has been corrobo-
rated by analytical calculations on extended spherical models
�25,26� and Monte Carlo simulations in symmetrical binary
fluid mixtures �27�, this is seen here not for the second de-
rivative of the transition line but for the first derivative as
well. The kink visible in the inset of Fig. 2 can be a mean-
field-like behavior.

Finally, a word should be said about the free energy func-
tion �14�. It is well known that according to a Landau expan-
sion its validity will be only near the critical end point,
where the magnetization is very small. In the present case,
however, we are extrapolating its applicability to regions far
away from the CE point. In order to justify a posteriori such
an extrapolation we first note that in fact the function given
by Eq. �14� is a polynomial of degree 2+2pmax=26, meaning
that we have a rather long series in m. Nevertheless, at T
=0 and �=1/4, Eq. �16� is satisfied for mF=mSAF=1 in such
a way that we recover the exact zero-temperature multiphase
point. In addition, the expected first-order transition is ob-
tained in the limit �→
. For these reasons we believe that
the dashed lines in Fig. 2 are really within the present two-
spin approximation �apart from the reentrant behavior at low
temperatures and the overall negative slope�.
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